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Statement of Proposed Research 

Replacement of grasslands and savannas by shrublands and woodlands has been widely 
reported in tropical, temperate and high-latitude rangelands worldwide (Archer 1 994). These 
changes in vegetation structure may reflect historical shifts in climate and land use; and are likely 
to influence biodiversity, productivity, above- and belowground carbon and nitrogen 
sequestration and biophysical aspects of land surface-atmosphere interactions. The goal of our 
proposed research is to investigate how changes in the relative abundance of herbaceous and 
woody vegetation affect carbon and nitrogen dynamics across heterogeneous savannas and 
shrub/woodlands. By linking actual land-cover composition (derived through spectral mixture 
analysis of AVIRIS, TM, and AVHRR imagery) with a process-based ecosystem model, we will 
generate explicit predictions of the C and N storage in plants and soils resulting from changes in 
vegetation structure. Our specific objectives will be to (1) continue development and test 
applications of spectral mixture analysis across grassland-to-woodland transitions; (2) quanti% 
temporal changes in plant and soil C and N storage and turnover for remote sensing and process 
model parameterization and verification; and (3) couple landscape fraction maps to an ecosystem 
simulation model to observe biogeochemical dynamics under changing landscape structure and 
climatological forcings. 

Functional Interpretation of Structural Change: Ecosystem and Biogeochemical Impacts 

Extensive databases on productivity, decomposition and nutrient cycling processes exist 
for grassland, shrubland and woodland ecosystems. However, we cannot necessarily take what 
we know of patterns and processes in these systems and apply them to systems undergoing 
shifts from herbaceous to woody plant domination. Furthermore, although many concepts and 
principles developed for grassland, shrubland and forest systems are potentially relevant. the 
novel, complex, non-linear behavior of communities undergoing lifeform transformations cannot 
be accounted for by simply studying or modeling woody and herbaceous components 
independently (House et a]. 2003). The appropriate representation of mixed woody-herbaceous 
systems is fundamental to the performance of global vegetation models (e.g., Neilson 1995, Daly 
et al. 2000). Models explicitly incorporating woody-herbaceous interactions and dynamics vary 
widely with respect to their approach, their complexity and their data requirements. They span 
a continuum of detail, from highly validated empirical formulations to mechanistic, spatially- 
explicit treatment of individual plants and vary with respect to (a) the extent to which they 
incorporate plant physiological and population processes; (b) their fundamental assumptions of 
how and to what extent woody and herbaceous plants access, utilize, and redistribute resources; 
(c) their spatial and temporal resolution; (d) the extent to which they incorporate effects of 
climate, soils and disturbance; and (e) their treatment of competition or facilitation interactions. 
Linking remote sensing of changes in woody plant cover/biomass/leaf area with ecosystem 
process models is one approach for making large scale assessments and predictions of changes in 
ecosystem function resulting from changes in the relative abundance of woody plants in dryland 
systems. 
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Table 1 summarizes the findings from our work at our focus sites in Texas and New 
Mexico. Our work, along with other studies, lends insights into what occurs when woody plants 
invade and establish in grasslands. What is remarkable from these studies is the speed at which 
some changes have occurred. Changes in soil properties for example have traditionally been 
viewed as occurring on the scale of centuries. However, as several of the studies in Table 1 
indicate, significant changes in soil organic carbon (SOC) and nitrogen pools can occur at decadal 
time scales subsequent to the establishment of woody plants in grasslands. Indeed, carbon 
inputs from woody plants appear to be dominating the SOC pool in upper horizons within 50 
years of their establishment (See ‘Surficial Soil C from Woody Vegetation’ in Table 1 ) .  SOC 
mass reflects the balance between organic matter inputs from plants and losses from the decay of 
organic matter. In the context of woody plant proliferation, SOC could increase if woody plants 
were more productive than herbaceous plants, and/or if woody-plant tissues decayed more 
slowly than herbaceous plant inputs. Precipitation and temperature mediate this trade-off by 
exerting control over both plant growth (inputs) and decomposition (outputs). 

The broad range of responses in Table 1 likely results from several factors. First, changes 
in SOC may be species dependent based on plant productivity, allocation patterns, and/or tissue 
chemistry. For example, at the Jornada site (MAP = 230 mm) SOC increases -230% under 
tarbush, but decreases under creosote bush (-9”/o) and mesquite (-1 5%) (Schlesinger and Pilmanis 
1998). In Texas (Vernon and La Copita) (MAP = 660-71 5 mm), SOC increases following woody 
plant proliferation in former grasslands range from 9% in temperate mesquite stands (Hughes et 
al. 2000) to 27-103% in more diverse subtropical woodlands (Boutton et al. 1998). Woody plant 
effects on microclimate which affect decomposition rates (notably soil moisture and temperature) 
also vary among growth forms in that evergreen and deciduous canopies differ in their magnitude 
and seasonality of rainfall and radiant energy interception, potentially affecting decomposition 
processes and hence C and N pools and fluxes. 

Differences in woody plant effects on soil properties listed in Table 1 might also reflect 
differences in the ways microbial communities respond to changes in vegetation structure. For 
example, shifts from bacterial to fungal populations may accompany shifts from herbaceous to 
woody domination (Purohit et al. 2002), thus enabling decomposers to more effectively deal with 
lower litter quality (i.e. increasing C:N), and hence maintain or increase soil respiration and 
mineralization. Changes in root biomass distribution accompanying shifts from grass to woody 
plant domination may also change the nature and depth of microbial activity, but available 
information available is scanty and conflicting. Jackson et al. (2002) inventoried nematodes 
dependent on plant roots as indicators of changes in microbial activity accompanying shifts from 
grass to woody plant dominance. They found substantial decreases in maximum depth on some 
sites (Jornada), substantial increases in maximum depth on some sites (Sevilleta) and no changes 
on another site (Vernon). 

woody plant domination will also reflect that balance between biotic processes promoting carbon 
accumulation (plant modification of soils and microclimate) and geophysical processes promoting 
nutrient losses (wind/water erosion). The magnitude of geophysical-induced losses and extent to 
which woody plants can compensate for these likely varies with soils and climate. For example, 

The potential for ecosystem C-sequestration associated with the conversion of grass to 



disturbances such as grazing, which promote woody plant encroachment, may also accelerate the 
loss of SOC via increased oxidation and erosion. At the Jornada site, shifts from grass to shrub 
domination have caused major changes in soil nutrient distributions (nutrient pools in shrub- 
affected soils >> nutrient pools of non-shrub soils), but no net change in total carbon stocks at 
the landscape scale, as C gains associated with woody plant proliferation are relatively small and 
have been offset by losses from inter-shrub zones (Connin et al. 1997, Schlesinger and Pilmanis 
1998). In contrast, at the La Copita site, losses of SOC associated with livestock grazing in the 
late 1800s-early 1900s appear to have been fully compensated for by invading woody plants by 
the 1950s; and by the 1990s, landscapes had ca. 30% more carbon than would occur had the 
pristine grasslands, present at the time of settlement, been maintained (Hibbard et al. 2003). 

significant increases in soil respiration, non-methane hydrocarbon emissions, N-mineralization 
and NO emissions (e.g. La Copita). In contrast, Juniperus encroachment in Konza appears to 
have caused little change in the SOC pool, despite suppression of soil respiration and high inputs 
of low litter quality by this evergreen arborescent (Figure 1) (Smith and Johnson 2003). 
Explanations for this behavior are elusive. At the Vernon site, some studies have shown 
significant declines in SOC with woody plant encroachment (Jackson et al. 2002) while others 
have shown significant increases (Hughes et al. 2000). Reasons for this discrepancy may be 
indicative of the importance of local differences in soil types and land management histories (e.g. 
Teague et al. 1999, Asner et al. 2003). Indeed, topo-edaphic features do exert substantial control 
over the direction and rate of change in plant and soil nutrient pools and fluxes. For example, 
SOC increases in subtropical woodland communities developing on former grasslands vary from 
27-37% on upland sandy loam soils to 103% on lowland clay loam soils (Boutton et al. 1998). 

These contrasting scenarios point to the need to account for both loss and gain vectors 
and to the potential dangers of extrapolating from plant or patch scale measurements to 
ecosystedlandscape scales. 

Studies documenting effects of woody plant encroachment on ecosystem processes are 
accumulating. However, an overlooked aspect of the woody plant encroachment phenomenon is 
the fact that land managers have been and will continue to implement management practices to 
reduce woody plant cover. Currently we know little of the extent of such clearing practices, rates 
of woody community recovery following treatments, or how the treatments affect soil nutrient 
pools and fluxes. 

The challenge for the remote sensing community is to provide tools for tracking structural 
and biophysical changes accompanying shifts in woody versus herbaceous plant abundance. The 
challenge for ecosystem modelers is to develop approaches for representing and predicting, in a 
spatially explicit fashion over large areas, the ecosystem specific changes (Table 1) that occur 
when land cover transitions from grass to woody plant domination. The linkage of remote 
sensing and ecosystem process models appears to be a viable strategy for tracking the functional 
consequences of changes in the relative abundance of herbaceous and woody vegetation in 
transitional grasslands. 

It is interesting to note that plant and soil C and N stocks increase at some sites despite 
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Developments in Image Analysis 

optical remote sensing methods for quantifying vegetation cover in heterogeneous landscapes. 
We emphasize our studies that address the issue of quantifying woody and herbaceous plant 
canopy properties, as this information is central to any analysis of woody encroachment and 
cover change. 

Here we summarize the challenges and successes in developing airborne and space-based 

Spatial Observations 

extend a field-level understanding of ecological, hydrological, and biogeochemical processes to 
broader spatial and temporal scales. It is critical for regional-scale monitoring of land management 
practices (e.g., Pickup and Chewings 1994, Pickup et al. 1994); and it serves as an important 
indicator of ecological and biogeochemical processes (Table 1 , Schlesinger et al. 1990, 1996, 
Archer et al. 2001). Furthermore, cover information is needed to constrain ecosystem and land- 
surface biophysical models to actual abundance and distribution of cover types (e.g., Running et 
al. 1994, Sellers et al. 1997, Neilson 1995, Daly et a]. 2000). 

There is a significant demand for high spatial resolution data such as from aerial 
photography and spaceborne sensors. Schlesinger and Gramenopoulos (1 996) used declassified 
high spatial resolution (-4m) monochromatic reconnaissance satellite photographs to estimate 
changes in woody vegetation cover between 1943 and 1994 along the Sahel-Sahara Desert ecotone 
in west Sudan. Their findings showed no change in woody plant canopy cover following 
widespread drought in mid- to late twentieth century. Asner and Heidebrecht (2002) used 
IKONOS imagery at the Jornada Experimental Range in New Mexico to quantify woody 
vegetation cover. IKONOS-based results agreed well with both field and low-altitude aerial 
photography estimates of woody canopy cover. However, the -1 m IKONOS data were 
valuable for quantifying woody cover only when the canopies were 23 m in diameter. 

as shrubs and bare soils, both in terms of percentage cover and spatial distribution. Image texture 
(mean, variance, and range of values within a specified pixel window) provides a means to 
understand land cover heterogeneity and the changes that occur at a spatial scale commensurate 
with human activities (Haralick et al. 1973, Franklin and Peddle 1990). This approach also 
provides a means to analyze historical aerial photographs by minimizing the effects of systematic 
errors associated with background brightness variation and vignetting. Hudak and Wessman 
(1 998,2001) used textural filtering of digitized aerial photographs and geostatistical analyses to 
estimate shrub density and temporal variability in South African savanna landscapes over a 30- 
year period. 

Vegetation cover is arguably the most important remote sensing measurement needed to 

Landscape or image texture refers to the local variation of land surface components such 

Spectral Observutions 

differentially sensitive to changes in vegetation cover versus condition (Carlson and Ripley 
1997). When an NDVI change occurs, whether or not it was caused by altered vegetation cover or 
condition of the cover cannot be readily determined. Moreover, the NDVI has had limited 
success in providing accurate estimates of shrubland cover in arid regions (e.g., Duncan et al. 

Although the NDVI is sensitive to pixel-level changes in greenness and fAPAR, it is not 



1993), owing to the variability of background materials such as soils and surface litter (Huete and 
Jackson 1988, van Leeuwen and Huete 1996). We conclude that the NDVI alone is not sufficient 
for quantifying woody canopy cover in drylands. 

cover in drylands. Pickup et al. (1 994) used a multi-temporal vegetation index derived from 
visible wavelength channels to successklly estimate semi-arid rangeland vegetation cover. One of 
the most common methods for woody and herbaceous cover analysis of grasslands involves 
decomposing image pixels into their constituent surface cover classes. Known as spectral mixture 
analysis (SMA), this method allows for the estimation of biophysically distinct cover types at 
the sub-pixel level. A wide range of SMA efforts have now been applied in analyses of grasslands 
using airborne and spaceborne multi-spectral scanners (e.g., Graetz and Gentle 1982, Smith et al. 
1990, Wessman et al. 1997, Asner et al. 1998a, Elmore et a]. 2000). 

A major assumption in linear mixture modeling is that the spectral variability of the major 
landscape components is accommodated by the reflectance signatures employed in the models. 
Some SMA approaches utilize spectral endmembers derived from the image (e.g., Wessman et al. 
1997, Elmore et al. 2000), while others employ libraries of endmember spectra (e.g., Smith et al. 
1990, Roberts et al. 1998). In heterogeneous landscapes, it is exceedingly difficult to locate image 
pixels containing 100% cover of each pertinent endmember, which is usually required when using 
image-derived endmembers in a spectral mixture model. Thus, library spectra have been widely 
employed with the recognition that libraries cannot easily capture the full range of endmember 
variability as is found in nature. Bateson and Curtiss (1 996) and Bateson et al. (2000) developed 
a unique SMA model that allows for the exploration of image data in multiple dimensions via 
principal components analysis. The technique allows the user to select endmember spectra based 
on the inherent spectral variability of the image data without requiring homogeneous pixels of 
each endmember. 

Independent of the endmember selection technique, Landsat-type instruments tend to 
provide sufficient spectral information to broadly discriminate between green vegetation and non- 
photosynthetic materials such as litter and soil (Smith et al. 1990, Asner et al. 1998a). However, 
they do not typically provide the spectral resolution necessary to delineate species, functional 
groups, or greenness conditions within the “green vegetation” class using spectral mixture models 
unless seasonality enables such separations. Furthermore, multi-spectral sensors such as Landsat 
TM and MODIS may not provide sufficient information to spectrally separate soils from non- 
photosynthetic vegetation (Asner et al. 2000). The performance of linear spectral mixture 
analysis has been compared to vegetation indices in drylands using multi-spectral satellite data. 
Elmore et al. (2000) compared the performance of a spectral mixture model against the NDVI in 
mapping green canopy cover from Landsat data. Although the NDVI was generally correlated 
with green cover, a marked increase in performance was obtained when utilizing the full multi- 
spectral data from Landsat with spectral mixture analysis. Similarly, McGuire et al. (2000) 
demonstrated that SMA was more accurate than the NDVI (and other indices) for quantifying 
green canopy cover in a California desert. 

sensors has advanced many analyses of drylands. For example, using spectral unmixing 
techniques, Wessman et al. (1 997) related subtle differences in hyperspectral reflectance 

Multi-spectral, non-NDVI measurements have been developed to estimate vegetation 

The additional information provided by hyperspectral imagers over that of multi-spectral 
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endmembers to biophysical conditions related to rangeland management in a Kansas grassland. In 
particular, high spectral resolution allowed separation of litter from soil based on plant lignin- 
cellulose absorption features. Several other efforts have combined hyperspectral reflectance data 
with spectral mixture models to estimate sub-pixel cover of vegetation in drylands. Roberts et al. 
(1998) used a multiple endmember spectral mixture model to map major plant functional groups 
and species in a California chaparral ecosystem. Asner and Lobell (2000) used shortwave-IR 
(2000-2500 nm) hyperspectral data from AVIRIS to accurately estimate green vegetation, non- 
photosynthetic vegetation and bare soil extent in arid shrublands and grasslands of the 
Chihuahuan Desert, New Mexico. In addition, Asner et al. (1998b) used imaging spectrometer 
data with spectral mixture analysis and radiative transfer inverse modeling to estimate both the 
horizontal extent and vertical density of live and senescent vegetation and fire fuel load in 
subtropical savanna ecosystems in southern Texas. 

Historical Woody Cover Change Analysis 
There are numerous trade-offs between using aerial photography or satellite imagery to 

track changes in woody plant cover in grassland to woodland transitions. Aerial photos, which 
may date back many decades, are relatively inexpensive and can provide a deeper historical 
baseline from which to document change than satellite imagery, which dates back only to the 
1970s. In addition, the spatial resolution of aerial photos is often more commensurate with the 
ground area occupied by the vegetation of interest (e.g., individual trees or shrubs), thus requiring 
little in the way of image manipulation. In contrast, satellite data require sophisticated calibration 
efforts, and the greater disparity between satellite spatial resolution and vegetation patch 
characteristics requires analytical techniques such as spectral mixture analysis. There is also a 
trade-off in ascertaining large-scale changes in woody plant cover in grasslands: the labor- 
intensive process of developing mosaics of very high resolution aerial photos versus using lower 
spatial resolution satellite imagery covering a much larger geographic area but requiring more 
complicated signal processing and ground validation efforts. 

As a compromise, Asner et al. (2003) opted to use a mosaic of high-resolution aerial 
photos to establish an historical baseline for woody vegetation cover and satellite imagery to 
quantify contemporary cover. They used this combination to quantify woody cover and 
aboveground carbon changes for a 63-year period in a north Texas rangeland. Mosaics of high 
spatial resolution aerial photography were analyzed for woody cover in 1937 using textural 
filtering and classification techniques. Areal estimates of woody cover in 1999 were then 
quantified using Landsat 7 data with spectral mixture analysis. 

Comparison of the 1937 and 1999 imagery revealed major changes in woody plant cover 
and aboveground carbon. There were numerous landscapes throughout the region where woody 
cover increased from < 15% in 1937 to > 40% in 1999. There were also substantial areas where 
woody plant cover decreased from > 80% in 1937 to < 50% in 1999. The result was a net 
increase in woody cover and homogenization of woody cover over the 63-year period.. 
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Challenges and Caveats 

Scale-Dependence of Observations 

and time. Detection of shrubs and trees within a grass matrix require image resolutions 
commensurate with the scale of the woody plants or sub-pixel analyses such as spectral mixture 
analysis. Similarly, frequency of data acquisition, remote and field-based, will have significant 
influence on analyses and interpretation of cover dynamics and their biogeochemical 
consequences. The shrub encroachment process under “natural” conditions progresses on a 
decadal scale. However, management practices introduce a temporal complexity to the landscape 
as different areas or management units experience different land uses at different times. For 
example, pastures or portions of pastures with high woody cover may be targeted for ‘brush 
management’ and those with low woody cover excluded from treatment. Brush may be cleared 
via mechanical means in some pastures and via herbicides or prescribed fire in others. 

A conceptual model illustrating the challenges to assessing regional woody plant cover 
and dynamics in the context of brush management is presented in Figure 1. Line I represents 
woody stand development that might occur in the absence of disturbance (e.g. elimination of fire 
due to grazing or active suppression) or management intervention. Line I1 represents a stand 
whose development is interrupted by natural (e.g. drought Archer et al. 1988, Allen and 
Breshears 1998), wildfire (Kurz and Apps 1999), pathogenic (McArthur et al. 1990, Ewing and 
Dobrowolski 1992)) or anthropogenic (e.g. brush management (Scifres 1980, Bovey 2001)) 
events that ‘reset’ the carbon accumulation process. The magnitude of these setbacks and rates 
of recovery vary depending upon the type, intensity and spatial extent of disturbance, soil type, 
environmental conditions immediately preceding and following the disturbance, and the growth 
form (evergreen vs. deciduous) and regenerative traits involved. Some stands regenerating from 
these setbacks might receive follow-up brush management treatments (Line HI), but others may 
not due to financial constraints, availability of subsidies, and many other factors. Thus, remote 
sensing observations over large areas and limited temporal resolution show net changes (A), 
whereby increases in woody cover on some landscapes or management units (B and C) are offset 
by decreases in others (D). 

Grassland landscapes undergoing woody encroachment are heterogeneous in both space 

Mdespread brush ‘control’ 
(herbicides, gmbbing, etc.) and 
1950s drought I 

Trend w/no fire, no 
herbicides 

Regional 
Woody 

Biomass 
or Cover 

1950 
Burned 

I 1900 

I 1937Aenalfhotos I pastures 

Figure I .  Conceptual model illustrating limitations in tracking regional carbon stock assessments in  
managed rangelands using remotely sensed imagery. See text for discussion. (Asner et al. 2003) 
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In sum, remote sensing analyses of woodland expansion must be compatible with the 
spatial scale of the landscape components and the temporal resolution of the dynamics driving 
cover changes. Frequency of data acquisition must keep pace with disturbance dynamics and/or 
land use change in order to capture the important transitional stages associated with management 
and recovery processes. For example, measurements with poor temporal resolution of net 
changes in woody plant cover across long time periods may insufficiently estimate rates of 
carbon cycling and consequently the source/sink potential of an area under transformation. 

Remote Sensing-Modeling Links 
New generations of ecosystem process models that incorporate remote sensing products 

as a basis for spatially explicit calculations at large scales are at various stages of development. 
Approaches linking dynamic simulations of function and process to remote sensing of structure 
and pattern hold promise for assessments of the functional consequences of changes in land- 
use/land-cover at unprecedented spatial and temporal scales. (e.g. Field et al. 1995, Schimel et al. 
1997, Wylie et al. 2003). For example, in models such as the Carnegie-Stanford Approach 
(CASA), calculations of NPP are based on remote sensing-estimates of APAR rather than 
mechanistic details of NPP (Field et al. 1995). This constrains the calculations to observed 
heterogeneity and reduces errors resulting from unrealistic assumptions based on optimum or 
potential conditions. This point is particularly important under conditions of woody plant 
encroachment, in which fundamental shifts in vegetation form result in profound functional 
differences and transitional properties that cannot be easily estimated based on a steady-state 
modeling approach. Even a simple modeling exercise exploring diurnal PAR absorption and 
carbon uptake in the La Copita, Texas savanna found that LAI, vegetation structure. and 
intercanopy shading (all estimated remotely) are important controls on carbon fluxes which may 
scale to affect regional carbon estimates (Asner et al. 1998a). 

In spatially heterogeneous environments, integration of remotely sensed data with 
ecosystem models enables us to establish a fundamental connection between the spatial structure 
and the manifestation of functional processes at landscape scales, an association that is difficult 
to achieve based solely on field measurements under the best of conditions (Wessman and Asner 
1998). Even if we were able to use field-based approaches, the sheer vastness and remoteness of 
the world’s drylands would make it impossible to make such assessments at the frequency and 
degree of spatial coverage that would be needed to adequately assess and track land use-land 
cover changes. Remote sensing not only provides access to the spatial distribution of vegetation 
structure, but also provides some means to bypass our present-day inability to mechanistically 
connect principles of allocation to biogeochemistry and ecosystem function (Wessman and Asner 
1998). Through the integration of remote sensing and modeling, we can, to some degree of 
accuracy, calculate and track NPP and both above- and belowground (e.g. Gill et a]. 2002) carbon 
storage and dynamics under contrasting land use practices at landscape and regional scales. 

Conclusions 

Although shifts from grass to woody plant domination have been widely reported in the 
world’s grasslands (Archer et al. 2001), there has been no effort to systematically quantify the 
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rate or extent of change nor to evaluate its biogeochemical consequences at large scales. Two 
recently emerging factors add urgency to this particular land cover change issue: (a) the latest 
USA carbon budget assessments which implicate “thickening” of woody vegetation in grasslands 
as a major (Houghton 2003) or perhaps even the single largest sink term (Schiniel et al. 2000); and 
(b) the possibility of industry or government-sponsored “carbon credit” or “carbon offset” 
programs. Jackson et al. (2002) stress that current uncertainties around the net change in the 
carbon cycle due to woody encroachment are large, as are the uncertainties in regional 
extrapolations of the biogeochemical consequences. Indeed, the complexity in such broad 
functional shifts in grassland to woodland transitions coupled to socioeconomic drivers of change 
are profound and in need of further study. 

First, the encroachment phenomenon is of sufficient magnitude and extent that synoptic 
monitoring via remote sensing of the spatial distribution and temporal dynamics of woody plant 
abundance is imperative. The ecosystem impacts of grassland to woodland transitions cannot be 
captured by ground measurements alone. However, and second in our list, studies of the 
biogeochemical consequences of these transitions must recognize the importance of understanding 
local and landscape mechanisms in order to achieve accurate and prognostic regional assessments. 
This requires well-designed field studies, documentation and monitoring of land use practices, and 
the implementation of ecosystem simulation models to test our knowledge and build scenarios of 
change trajectories. We emphasize the importance of integrating fieldwork into the analysis and 
interpretation of remote sensing data and model development to achieve sufficient understanding 
of these complex landscapes. 

A third important factor is the fact that, traditionally, there have been strong policy, 
subsidy and economic incentives for brush clearing on rangelands. Indeed, brush management is 
often the greatest single expense in commercial ranching enterprises (Scifres 1980, Scifres & 
Hamilton 1993, Bovey 2001). However, with the prospect of carbon crediuoffset programs, 
‘brush’ may become an income-generating commodity because of its potential to sequester more 
carbon above- and belowground relative to the grasslands it replaced (e.g., Archer et al. 2001). I t  
is easy to envision scenarios in the near future, whereby land owners/managers may be paid NOT 
to clear existing woody vegetation. Furthermore, there could be strong economic incentives to 
engage in land management practices that promote woody plant encroachment and the 
displacement of grasslands. From a carbon sequestration perspective this may be desirable. 
However, perverse outcomes with respect to livestock production, wildlife habitat, grassland 
biodiversity, aquifedstream recharge, and NOx and non-methane hydrocarbon emissions may also 
result (Archer et al. 2001). The scientific community will be uniquely challenged to address the 
ramifications of these looming issues in land use. We believe that linked remote sensing-modeling 
approaches will be a critical underpinning for the types of landscape and regional monitoring and 
assessments that will be required by policy makers seeking to make informed decisions. 

Our studies of grasslands in the Southwest emphasize the importance of three factors. 
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Table 1 .  Changes in ecosystem properties accompanying woody plant encroachment into grasslands 
(--, -, 0, +, ++ represent substantial decrease, slight decrease, no change, slight increase, and major 
increase, respectively; "?" denotes expected but unsubstantiated changes). Numerical superscripts 
point to studies reporting these changes; letter superscripts refer to explanations (see footnotes). 
For additional information on sites, visit the following URLs: Vernon: 
h t t D : // i 11 n i per. t a m ti .ed id1 R M /br u s h/ PO 1 J A pro-i ec t h o m e. h t m ; La Copita : 
http: / /wwn .rreocities.comllacopita; Jornada: http://usda-ars.nmsii . d i d ;  S'evellita: 
http://sev illeta.unin .edu/. 

Metric 
Lat/Long 

Vernon La Copita Jornada Sevilleta 
34.5" N; 99.2" W 27.4"N; 98.1" W 32.5" N:106.8"W 34.5"N;106.9"W 

vergreen (E) or Deciduous (D) 
Potential Nz-fixation? 

b "Range reflects different land use/management histories. Range may reflect local differences in soil type 
and land use history. 
particle size fractions. e Upper 7 to 20 cm 

I =  Asner et al. 2003; 2= Ansley et al. 2001; 3=Archer et a1 1988; 4=Buffington et al. 1965; S=Archer 1995; 
6=McCulley 1998; 7=Simmons 2003; 8=Hibbard, et al. 2001; 9=Hibbard et al. 2003; IO=Huenneke et ai. 2002; 
1 l=Hughes et al. 2000; 12=Schlesinger & Pilmanis 1998; 13=Cross & Schlesinger 2001; 14=Archer et al. 2001; 
19=Smith & Johnson 2003; 15=Jackson et al. 2002; 16=Kieft et al. 1998; 17=Boutton et al. 1998; 18=Connin et 
al. 1997; 19=Martin 2003; 20=Cole 1996; 214uenther 1999; 22=Gallardo & Schlesinger 1992: 23=Ansley et a1 
2002; 24=Pers.Obs.; 25=Hartley & Schlesinger 2000; 26=Gill & Burke 1999; 27=Nash et al. 1991; 28=Cross & 
Schlesinger 1999. 

Range for different community types and age-states. Values for different soil 
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Archer, S.  1995. Herbivore mediation of grass-woody plant interactions. Tropical Grasslands 29:218-235. 
Archer, S., T. W. Boutton, and K.  A. Hibbard. 2001. Trees in grasslands: biogeochemical consequences of woody plant expansion. Pages 

115-138 in E.-D. Schulze, M. Heimann, S. Harrison, E. Holland, J. Lloyd, 1. Prentice, and D. Schimel, editors. Global 
biogeochemical cycles in the climate system. Academic Press, San Diego. 

thorn woodland. Ecological Monographs 58:111-127. 

in Texas drylands, 1937-1999. Global Biogeochemical Cycles 9: 1-20. 

uptake using satellite data fusion and inverse modeling. Journal of Geophysical Research 103(D22):28,839-28.853 

and hyperspectral observations. International Journal of Remote Sensing 23( 19):3939-3958. 

of the Environment 74:99-112. 

Applications 8:906-925. 

reflectance variability of arid ecosystems. Remote Sensing of Environment 74:69-84. 

Archer, S., C. 1. Scifres, C. R. Bassham, and R. Maggio. 1988. Autogenic succession in a subtropical savanna. conversion of grassland to 

Asner, G.. S. Archer, R. Hughes, R. Ansley, and C. Wessman. 2003. Net changes in regional woody vegetation cover and carbon storage 

Asner, G.P., C.A. Bateson, J.L. Privette, N. El Saleous, and C.A. Wessman. 1998a. Estimating vegetation structural effects on carbon 

Asner, G.P. and K.B. Heidebrecht. 2002. Spectral unmixing of vegetation, soil and dry carbon in arid regions. Comparing multi-spectral 

Asner, G. P., and D. B. Lobell. 2000. A biogeophysical approach for automated SWlR unmixing of soils and vegetation. Remote Sensing 

Asner, G.P., C.A. Wessman, and S. Archer. 1998b. Scale dependence of PAR absorption in terrestrial ecosystems Ecological 

Azner: G.P., C.A. Wessman, C.A. Ba!eson: and J.L. Privet!.. 2000. Impact of!is:ue, canopy, and !adscape factors oii :hc hypcrspectial 

Bateson, C.A. and B. Curtiss. 1996. A method for manual endmember selection and spectral unmixing Remote Sensing of Environment 

Bateson, C.A., G.P. Asner and C.A. Wessman. 2000. Endmember bundles: a new approach to incorporating endmember variability into 
spectral mixture analysis. IEEE Transactions on Geoscience and Remote Sensing 38: 1083-1094. 

Boutton, T. W., S. R. Archer, A. J. Midwood, S.  F. Zitzer, and R. Bol. 1998. Delta-C-I3 values of soil organic carbon and their use in 

documenting vegetation change in a subtropical savanna ecosystem. Geoderma 82:5-41. 
Bovey, R. W. 2001. Woody plants and woody plant management: ecology, safety, and environmental impact. Marcel Dekker. Inc., New 

York. 
Buffington, L. D., and C. H. Herbel. 1965. Vegetational changes on a semidesert grassland range from 1858 to 1963. Ecological 

Monographs 35: 139-1 64. 
Carlson, T.N. and D.A. Ripley. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing 

of Environment 62(3):241-252. 
Cole, J .  K . ,  R. E. Martin, E. A. Holland, S. R. Archer, K .  Hibbard, and M. Scholes. 1996. Nitric oxide fluxes from a subtropical savanna. 

La Copita Research Area 1996 Consolidated Progress Report CPR-5047, Texas Agricultural Experiment Station, College Station. 
TX. 

expansion Oecologia 110:374-386. 

55(3)-229-243. 

Connin, S. L., R. A. Virginia, and C. P. Chamberlain. 1997. Carbon isotopes reveal soil organic matter dynamics following arid land shrub 

Cross, A. F., and W. H. Schlesinger. 1999. Plant regulation of soil nutrient distribution in the northern Chihuahuan Desert. Plant Ecology 

Cross, A. F . ,  and W. H. Schlesinger. 2001. Biological and geochemical controls on phosphorus fractions in semiarid soils. 
Biogeochemistry 52~155-172. 

Daly, C.. D. Bachelet, J .  M. Lenihan, R. P. Neilson, W. Parton, and D. Ojima. 2000. Dynamic simulation of tree-grass interactions for 
global change studies. Ecological Applications IO:449-469. 

Duncan, J., D. Stow, J. Franklin, and A. Hope. 1993. Assessing the relationship between spectral vegetation indices and shrub cover i n  
the Jornada Basin, New Mexico. International Journal of Remote Sensing 14:3395-3416. 

Elmore, A.J., J.F. Mustard, S.J. Manning, and D.B. Lobell. 2000. Quantifying vegetation change in semiarid environments: Precision and 
accuracy of spectral mixture analysis and the Normalized Difference Vegetation Index. Remote Sensing of Environment 

145:11-25. 

73( 1):87-102. 
Ewing, K , and J. P. Dobrowolski. 1992. Dynamics of shrub die-off in a salt desert plant community. Journal of Range hlanagement 

Field, C.B., J.T. Randerson, and C.M. Malmstrom. 1995. Global net primary production: combining ecology and remote sensing. Remote 

Franklin. S.E. and D.R. Peddle. 1990. Classification of SPOT HRV imagery and texture features. International Journal of Remote 

Gallardo, A,, and W. H. Schlesinger. 1992. Carbon and nitrogen limitations of soil microbial biomass in desert ecosystems. 

Gill, R.A. and 1.C. Burke. 1999. Ecosystem consequences of plant life form changes at three sites in the semiarid IJnited States 

Graetz, R.D. and M.R. Gentle. 1982. The relationships between reflectance in the Landsat wavebands and the composition of an 

45: 194- 199. 

Sensing of Environment 5 1 :74-88. 

Sensing 11(3):551-556. 

Biogeochemistry 18: 1-17. 

Oecologia 12 1 :55 1-563. 

Australian semi-arid shrub rangeland. Photogrammetric Engineering and Remote Sensing I 1 :2253-2267 
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Guenther, A., S.  Archer, J. Greenberg, P. Harley, D. Helmig, et al. 1999. Biogenic hydrocarbon emissions and landcovericlimate change 

llaralick, R., K.  Shanmugam, and I. H. Dinstein. 1973. Texture Features for Image Classification: IEEE Transactions on Systems, Man. 

Hartley, A.E. and W.H. Schlesinger. 2000. Environmental controls on nitric oxide emission from northern Chihuahuan desert soils 

Hibbard, K., D. Schimel, S. Archer, D. Ojima, and W. Parton. 2003. Grassland to woodland transitions: integrating changes in landscape 

Hibbard, K .  A,, S. Archer, D. S. Schimel, and D. V. Valentine. 2001. Biogeochemical changes accompanying woody plant encroachinent 

Houghton, R. A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in  land use and land 

House, J. I.: S. Archer, D. D. Breshears, and R. J. Scholes. 2003. Conundrums in mixed woody-herbaceous plant systems. Journal of 

Hudak, A. T., and C. A. Wessman. 1998. Textural analysis of historical aerial photography to characterize woody plant encroachment in  

Hudak, A. T., and C. A. Wessman. 2001. Textural analysis of high resolution imagery to quantify bush encroachment in Madikwe Game 

Huenneke, L. F., and M. R. J.P. Aderson, W.H. Schlesinger. 2002. Desertification alters patterns of aboveground net primary product in in 

Huete, A.R. and R.D. Jackson. 1988. Soil and atmosphere influences on the spectra of partial canopies. Remote Sensing o f  Environment 

Hughes, R. F., S. R. Archer, G. P. Asner, C. R. McMurtry, and C. A. Wessman. 2000. Ecosystem-level impacts of mesquite (Prosopis 

in a subtropical savanna. Physics and Chemistry of the Earth (B) 24:659-667. 

and Cybernetics, SMC-3:610-621. 

Biogeochemistry 50:279-300. 

structure and biogeochemistry. Ecological App1ications:ln Press. 

in a subtropical savanna. Ecology 82:1999-2001. 

management 1850-2000. Tellus 558:378-390. 

Biogeography In Press. 

South African savanna. Remote Sensing and the Environment 66:3 17-330. 

Reserve, South Africa, 1955-1996. International Journal Of Remote Sensing 22:273 1-2740. 

Chihuahuan ecosystems. Global Change Biology 8:247-264. 

25( 1):89-105. 

glandulosa) encroachment on C and N pools in herbaceous vegetation and soils in a temperate savanna. Ecological Society o f  
America 85th Annual Meeting Abstract124. 

Jackson, R. B., J. L. Banner, E. G. Jobbagy, W. T. Pockman, and D. H. Wall. 2002. Ecosystem carbon loss with woody plant invasion of 
grassland. Nature 418:623-626. 

Kieft, T. L., S. W. Carleton, S. R. Loftin, R. Aguilar, J. 0. Craig, and D A. Skaar. 1998. Temporal dynamics in soil carbon and nitrogen 
resources at a grassland-shrubland ecotone. Ecology 2:671-683. 

Kurz: W. A,, and M. J. Apps. 1999. A 70-year retrospective analysis of carhon fluxes in the Canadian forest sector. Ecological 
Applications 9:526-547. 

Martin, R. E. 2003. Effects of woody encroachment on savanna nitrogen dynamics: combining biogeochemistry and remote sensing 
University of Colorado, Boulder, CO. 

McArthur, E. D., E. M. Romney, S. D. Smith, and P. T. Tueller. 1990. Cheatgrass invasion, shrub die-off and other aspects of shrub 
biology and management. USDA/Forest Service Gen. Tech., Ogden, Utah. 

McCulley, R. 1998. Soil respiration and microbial biomass in a savanna parkland landscape: spatio-temporal variation and environmental 
controls. M.S. Thesis. Texas A & M University, College Station. 

Nash, M.S., P.J. Wierenga, and A. Gutjahr. 1991. Time series analysis of soil moisture and rainfall along a line transect in arid rangeland 
Soil Science 152(3): 189-198. 

Neilson, R. P. 1995 A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications 5 362- 
385. 

Pickup, G. and Chewings. 1994. A grazing gradient approach to land degradation assessment in arid areas from remotely-sensed data. 
International Journal of Remote Sensing 15(3):597-617. 

Pickup, G.,  G.N. Bastin and V.H. Chewings. 1994. Remote-sensing-based condition assessment for nonequilibrium rangelands under 
large-scale commercial grazing. Ecological Applications 4(3): 497-5 17. 

Purohit, U., S.K. Mehar, and S. Sundaramoorthy. 2002. Role of Prosopis cineraria on the ecology of soil fungi in Indian desert. Journal 
of Arid Environments 52( I) :  17-27. 

Roberts, D.A., M. Gardner, R. Church, S. Ustin, G. Scheer, and R.O. Green. 1998. Mapping chaparral i n  the Santa Monica Mountains 
using multiple endmember spectral mixture models. Remote Sensing of Environment 65(3):267-279. 

Running, S. W., T. R. Loveland and L.  L. Pierce. 1994. A vegetation classification logic based on remote sensing for use in global 
biogeochemical models. Ambio 23: 77-81. 

Schimel, D.S., W. Emanuel, B. Rizzo, T. Smith, F. l .  Woodward, et al. 1997. Continental scale variability in ecosystem processes: 
Models, data, and the role of disturbance. Ecological Monographs 67(2):251-271. 

Schimel, D., J. Melillo, H. Tian, A. D. McGuire, D. Kicklighter, et al. 2000 Contribution of increasing C02 and climate to carbon storaee 
by ecosystems in the United States. Science 287:2004-2006. 

Schlesinger, W. H., and N. Gramenopoulos. 1996. Archival photographs show no climate-induced changes in woody vegetation i n  the 
Sudan, 1943-1994. Global Change Biology 2:137-141. 

Schlesinger, W. H , and A. M. Pilmanis. 1998. Plant-soil interactions in deserts. Biogeochemistry 42:169-187. 
Schlesinger, W.H., J.A. Raikes, A.E. Hartley and A.F. Cross. 1996. On the spatial pattern of soil nutrients in desert ecosystems Ecology 

Schlesinger, W., J.  Reynolds, G. Cunningham et al. 1990. Biological feedbacks in global desertification. Science 247-1043-1045 
Scifres, C. 1. 1980. Brush Management: Principles and Practices for Texas and the Southwest. Texas A & M University Press. College 

Scifres, C. J., and W. T. Hamilton. 1993. Prescribed burning for brushland management: the South Texas example. Texas A & M Press. 

Sellers, P.J., R.E. Dickinson, D.A. Randall, A.K. Betts, F.G. Hall. et al. 1997. Modeling the exchanges of energy, water, and carbon 

Simmons, M. T. 2003. Tree-grass and tree-tree interactions in a temperate savanna. Ph.D. Texas A&M University. College Station 
Smith. D., and L. Johnson. 2003. Expansion of Juniperus in the Great Plains: Changes in soil organic carbon dynamics Global 

Smith. M.O., S.L. Ustin, J. B. Adams, and A.F. Gillespie. 1990. Vegetation in deserts: I .  A regional measure of abundance from 

771364375. 

Station, Texas USA. 

College Station, TX. 

between continents and the atmosphere. Science 275(5299):502-509. 

Biogeochemical Cycles. 

multispectral images. Remote Sensing of Environment 31: 1-26. 

- 13 - 



Teague, W., J. Foy, B. Cross, and S. Dowhower. 1999. Soil carbon and nitrogen changes following root-plowing of rangeland. Journal of 
Range Management 52:666-670. 

van Leeuwen, W.J.D. and A.R. Huete. 1996. Effects of standing litter on the biophysical interpretation of plant canopies wit11 spectral 
indices. Remote Sensing Environment 55:123-133. 

Wessman, C. A.. and G. P. Asner. 1998. Ecosystems and problems of measurement at large spatial scales. Pages 346-371 in M Pace and 
P. Groffman, editors. Successes, Limitations, and Frontiers in Ecosystem Science. Springer-Verlag; New York. 

Wessman, C. A., C. A. Bateson, and T. L. Benning. 1997. Detecting fire and grazing patterns in tallgrass prairie using spectral mixtore 
analysis. Ecological Applications 7:493-5 11. 

Wylie, B.K., D.A. Johnson, E. Laca, N.Z. Saliendra, T.G. Gilmanov, B.C. Reed, L.L. Tieszen, and B.B. Worstell. 2003. Remote Sensing 
of Environment 85:243-255. 

Project Involvement of Undergraduate, Graduate and Post-Doctoral Researchers 

Undergraduate Students Kevin Cody (Univ. Colo.) 
James Hurley (Univ. Colo.) 
Jeremy Klass (Univ. Colo.) 
Seth Zunker (Univ. (2010.) 
Dawn Browning (Univ. Arizona) 
Nancy Golubiewski (Univ. Colo.) 
Andrew Hudak (Univ. Colo.) 
David Lobell (Stanford) 
Robin Martin (Univ. Colo.) 
Mohammad Noor (Jordan, Texas A&M) 
Mark Simmons (Texas A&M) 
Winston Wheeler (Carnegie) 
Sharon Hall (Univ. Colo.) 
Jeff Hicke (Univ. Colo.) 
R. Flint Hughes (Univ. Colo.) 

Graduate Students 

Post-Doctoral Researcher 

Refereed Publications: 
Asner, G.P. 1998. Biophysical and biochemical sources of variability in canopy reflectance. 

Asner, G.P., S.Archer, R.F. Hughes, R.J. Ansley, and C.A. Wessman. 2003. Net changes 
Remote Sensing of Environment 64121 5-232. 

in regional woody cover and carbon storage in North Texas rangelands, 1937- 1999. 
Global Change Biology 9(3):3 16-335. 

Asner, G.P., Bateson, C.A., Privette, J.L., El Saleous, Wessman, C.A 1998a. Estimating 
vegetation structural effects on carbon uptake using satellite data fusion and inverse 
modeling. Journal of Geophysical Research 103:28,839-28,853. 

Asner, G.P. and K.B. Heidebrecht. 2002. Spectral unmixing of vegetation, soil and dry 
carbon in arid regions: Comparing multi-spectral and hyperspectral observations. 
International Journal of Remote Sensing 23 ~3,939-3,958. 

unmixing of soils and vegetation. Remote Sensing of Environment 74:99-112. 
Asner, G.P. and D.B. Lobell. 2000. A biogeophysical approach for automated SWIR 
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Asner, G.P., C.A. Wessman, and S. Archer. 1998. Scale dependence of absorption of 
photosynthetically active radiation in terrestrial ecosystems. Ecological 
Applications 8:906-925. 

Asner, G.P., C.A. Wessman, and C.A. Bateson. 2000. Impact of tissue, canopy and 
landscape factors on reflectance variability of arid ecosystems. Remote Sensing of 
Environment. 74:69-84. 

Asner, G.P., C.A. Wessman, D.S. Schimel, and S. Archer. 1998. Variability in leaf and 
litter optical properties: implications for canopy BRDF model inversions using 
AVHRR, MODIS, and MISR. Remote Sensing of Environment 63:200-2 15. 

Asner, G.P., Wessman, C.A., and Schimel, D.S. 1998. Heterogeneity of savanna canopy 
structure and function from imaging spectrometry and inverse modeling. Ecological 
Applications 8: 1022- 1036. 

approach to incorporating endmember variability into spectral mixture analysis. 
Trans. on Geoscience and Remote Sensing. 38(2): 1083-1 094. 

Boutton, T.W., S.R. Archer, A.J. Midwood. 1999. Stable isotopes in ecosystem science: 
structure, function and dynamics of a subtropical savanna. Rapid Communications 
in Mass Spectrometry 13:1263-1277. 

accompanying woody plant encroachment in a subtropical savanna. Ecology 

Hibbard, K A, D S Schimel, S Archer, D Ojima, and W Parton. 2003. Grassland to 

Bateson, C.A., G.P. Asner, and C.A. Wessman. 2000. Endmember bundles: A new 

Hibbard, KA, S Archer, DS Schimel, D Valentine. 2001. Biogeochemical changes 

82:1999-2011. 

woodland transitions: integrating changes in landscape structure and 
biogeochemistry . Ecological Applications 1 3: 9 1 1-926 

herbaceous plant systems . Journal ofBiogeography 30: 1763-1 777. 

quantify bush encroachment in Madikwe Game Reserve, South Africa, 1955- 1996. 
International Journal of Remote Sensing 22( 14):273 1-2740. 

carbon and nitrogen pools in South African savanna. Austral Ecology 28: 173- 18 1 .  

Response of Nebraska Sand Hills natural vegetation to drought, fire, grazing, and 
plant functional type shifts as simulated by the Century model. Climatic Change 

House, J, S Archer, D Breshears, and R J Scholes. 2003. Conundrums in mixed woody- 

Hudak, A.T. and C.A. Wessman. 2001. Textural analysis of high resolution imagery to 

Hudak, A.T., C.A. Wessman, and T.R. Seastedt. 2003. Woody overstory effects on 

Mangan, J.M., J.T. Overpeck, R.S. Webb, C. Wessman, and A.F.H. Goetz. 2004. 

63 149-90. 
Martin, R.E., G.P. Asner, R.J. Ansley, and A.R. Mosier. 2003. Effects of woody 

vegetation encroachment on soil nitrogen oxide emissions in a temperate savanna. 
Ecological Applications 13(4):897-910. 

Miller, D, SR Archer, SF Zitzer, MT Longnecker. 2001. Annual rainfall, topoedaphic 
heterogeneity and growth of an arid land tree (Prosopis glandulosa) . Journal of 
Arid Environments 48~23-33. 
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Nelson, J A, P W Barnes, and S Archer. 2002. Leaf demography and growth responses to 
altered resource availability in woody plants of contrasting leaf habit in a 
subtropical savanna . Plant Ecology 160: 193-205 

Privette, J.L., G.P. Asner, F. Huemmrich, et nl. 2000. The Prototype Validation Exercise 
(PROVE) for EOS land and atmosphere products. Remote Sensing of Environment 
74: 1-1 2. 

Stroh, JC, S Archer, JA Doolittle, LP Wilding. 2001. Detection of edaphic 
discontinuities with ground-penetrating radar and electromagnetic induction. 
Landscape Ecology 16.377-390. 

White, M., G.P. Asner, J.L. R. Nemani et al. 2000. Measuring fractional cover and leaf area index 
in arid ecosystems: digital camera, radiation transmittance and laser altimetry methods. 
Remote Sensing of Environment 74:45-57. 

Book Chapters: 
Archer, S. and C.J. Stokes. 1999. Stress, disturbance and change in rangeland ecosystems, 

In: Rangeland DesertrJication (0 Amalds and S Archer, eds). Advances in 
Vegetation Science series, Kluwer Publishing Company (In Press). 

Archer, S, TW Boutton, KA Hibbard. 2001. Trees in grasslands: biogeochemical 
consequences of woody plant expansion, pp. 11 5-137. In: Global Biogeochemical 
Cycles in the Climate System (E-D Schulze, SP Harrison, M Heimann, EA Holland, 
J Lloyd, IC Prentice, D Schimel, eds.). Academic Press, San Diego. 

Archer, S, and A Bowman. 2002. Understanding and managing rangeland plant 
communities , pp. 63-80. In: Global rangelands: progress and prospects (A. Grice 
and K. Hodgkinson, eds.). CAB International, Wallingford, Oxon, United Kingdom 

savanna landscape: field and modeling perspectives , pp. 359-373. In: Global 
Environmental Change in the Ocean and on Land (H. Kawahata and H. Koizumi, 
eds.). Kluwer Academic Publishing, Dordrecht, Netherlands. 

Science series, Kluwer Publishing Company. 

examples and current assessments. Icelandic Agricultural Resaerch Service (RALA), 
Reykjavik, Iceland. 

Arnalds, 0. and S. Archer. 1999. Introduction, In: Rangeland Desertification (0. Arnalds 
and S. Archer, eds). Advances in Vegetation Science series, Kluwer Publishing 
Company. 

Wessman, C.A., S. Archer, L.C. Johnson, and G.P. Asner. 2004. Woodland expansion in 
US grasslands: Assessing land-cover change and biogeochemical impacts. Pgs: 1 85- 
208. In: Gutman, G., A.C. Janetos, C.O. Justice, E.F. Moran, J.F. Mustard, R.R. 
Rindfuss, D. Skole, B.L. Turner 11, M.A. Cochrane (eds). Land Change Science: 
Observing, Monitoring and Understanding Trajectories of Change on the Earth’s 
Surface. Kluwer Academic Publishers, Dordrecht. 

Archer, S, T W Boutton, and C R McMurtry. 2004. Carbon and nitrogen storage in a 

Arnalds, 0. and S. Archer, eds. 1999. Rangeland DesertiJication. Advances in Vegetation 

Arnalds, 0. and S. Archer, eds. Case studies of rangeland degradation: international 
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Wessman, C.A., W. Cramer, R.J. Gurney, P.H. Martin, W. Mauser, R. Nemani, J.M. 
Paruelo, J. Peiiuelas, S.D. Prince, S.W. Running, and R.H. Waring. 1999. Dahlem 
Group Report: Remote sensing perspectives and insights for study of complex 
landscapes. In: Tenhunen, J.D. and P. Kabat (eds.). Integrating Hydrology, 
Ecosystem Dynamics, and Biogeochemistry in Complex Landscapes. John Wiley & 
Sons Ltd., Chichester, UK. Pp 89-103 

Invited Papers and Presentation 
Archer, S. 1998. Patch and boundary dynamics in changing landscapes. Department of 

Biology, University of New Mexico, Albuquerque. 
Archer, S. 1998. Ecosystem change, land surface-atmosphere interactions and people. 

Interdisciplinary Earth Systems Science Colloquium. University of Arizona, 
Tucson. 

and functional consequences. Sevilleta Research Symposium. Univ. New Mexico, 
Albuquerque. 

constraints and consequences. Symposium on Integrated Life and Earth Science 
Approaches to Understanding Global and Environmental Change, University of 
Texas, Austin. 

Archer, S. 1999. Tree-grass interactions. Department of Biology, Univ. Regina, Regina, 
Canada 

Archer, S. 1999. Trees in grasslands: historical changes and ecological consequences. Leu 
Endowed Lecture, Center for Grassland Studies, University of Nebraska, Lincoln. 

Archer, S. 2001. Students, trees, grasses and herbivores. School of Renewable Natural 
Resources, University of Arizona, Tucson. 

Archer S. and T.W. Boutton. 1999. Historic changes in tree/grass abundance: 
implications for C and N storage. Soil Science SOC. America Annual Meetings. 

Archer, S. and Boutton, T.W. 2000. Carbon sequestration: a viable commodity? Texas 
Plant Protection Conference, College Station, TX. 

Archer, S. & Boutton, T.W. 2001. Carbon sequestration in rangelands: the good, the bad 
and the ugly. Texas Range Extension Training Program, College Station, TX 

Archer, S, and T W Boutton. 2002. Trees in grasslands: woody plant proliferation and 
the carbon cycle, pp. 39-46. In: Evaluation of terrestrial carbon storage and 
dynamics by in-situ and remote sensing measurements (T. Akiyama and H. 
Koizumi, eds.). River Basin Research Center, Gifu University, Japan. 

processes: the good, the bad and the ugly. Joint Ecological SOC. AmericdSoc. Range 
Management Symposium ‘Ecosystem Simplification’, Kailua-Kona, Hawaii. 

overview. In: Symposium on ‘Thresholds and Non-linear Responses in 
Ecosystems: Understanding, Sustaining, and Restoring Complex Rangelands.” 
Ecological Society of America Annual Meetings, Madison, WI. 

Archer, S. 1999. Grass-woody plant transitions in dryland ecosystems: rates, patterns 

Archer, S. 1999. Historic shifts in vegetation land cover in semi-arid ecosystems: causes, 

Archer, S, TW Boutton, KA Hibbard. 2001. Ecosystem simplification and ecological 

Archer, S, Lauenroth, WK, Sala, OE. 2001. Thresholds and non-linear dynamics: an 
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Boutton, T.W. and S.R. Archer. 1998. Rates of soil carbon and nitrogen accumulation 
during succession from grassland to woodland in a subtropical savanna ecosystem. 
Symposium on "How Much Carbon Can Soils Sequester?" Soil Science SOC. Amer. 
Ann. Meetings, Baltimore. 

ecosystem. Soil Science SOC. America Annual Meetings. 

Texas Plant Protection Conference, College Station, TX. 

understanding the basics. Texas Range Extension Training Program, College Station, 
TX 

Golubiewski, N.E. and C.A. Wessman. 1999. Linking structure and function: the spectral 
unmixing of AVIRIS images for Sevilleta LTER. International Association of 
Landscape Ecologists (IALE) World Conference. Snowmass, CO. 

fire and grazing on plant productivity and soil respiration. Ecological Society of 
America Annual Meetings, Spokane, WA. 

Hubbard, JA, S Archer, TW Boutton, RJ Ansley. 2000. Effects of fire and simulated 
grazing on root dynamics and soil respiration in a mixed-grass prairie. Ecological 
Society of America 85th Annual Meeting, Snow Bird, Utah. 

Wessman. 1999. Ecosystem level impacts of woody plant encroachment: Prosopis 
glandulosa (honey mesquite) alteration of C and N storage and cycling in a north 
Texas savanna. Ecological Society of America Annual Meetings (Spokane). 

Hughes, R.F., S.A. Archer, G.P. Asner, C.R. McMurtry, and C.A. Wessman. 2000. 
Ecosystem-level impacts of Mesquite (Prosopis glandulosa) encroachment on C 
and N pools in herbaceous vegetation and soils in North Texas rangelands. 
Ecological Society of America Annual Meeting, Snowbird, Utah. 

invasive woody shrub (Prosopis glandulosa) in grasslands. Ecological Society of 
America 85th Annual Meeting, Snow Bird, Utah, p. 295. 

Woodland development and the N-cycle of a subtropical savanna parkland: insights 
from d l  5N of plants and soils. Ecological Society of America Annual Meetings 
(Spokane). 

biomass in a savanna parkland: The role of soil moisture. Ecological Society of 
America Annual Meetings (Spokane) 

honey mesquite (Prosopis glandulosa) on the growth of Texas wintergrass (Sfipa 
leucotricha) in a temperate savanna in north Texas. SOC. Range Management Annual 
Meetings (Boise). 

Boutton, T.W. and S, Archer. 1999. Soil carbon dynamics in a subtropical savanna 

Boutton, T. W. and Archer, S. 2000. Carbon sequestration: understanding the basics. 

Boutton, T.W. and Archer, S. 2001. Carbon sequestration in range and pasture: 
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